Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method

Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2023-03, Vol.69 (3), p.n/a
Hauptverfasser: Huang, Fei, Motealleh, Behrooz, Wang, Donghui, Cornelius, Chris J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.17908