Experimental study of an oscillating water column wave energy converter based on regular waves
Increasingly, marine renewable energies are taking over as one of the most relevant solutions to minimize dependence on fossil fuels. The management and exploitation of such energy requires the optimization of converters that will, later on, ensure the conversion of hydraulic energy into electrical...
Gespeichert in:
Veröffentlicht in: | Marine systems & ocean technology : journal of SOBENA--Sociedade Brasileira de Engenharia Naval 2023-12, Vol.17 (3-4), p.147-163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasingly, marine renewable energies are taking over as one of the most relevant solutions to minimize dependence on fossil fuels. The management and exploitation of such energy requires the optimization of converters that will, later on, ensure the conversion of hydraulic energy into electrical energy; among these converters are the oscillating water column. An OWC is characterized by its simplicity and its effectiveness against turbulent ocean conditions. The performance of OWCs depends strongly on the geometrical parameters of the air chamber such as: chamber walls, width, thickness of the front wall, slope at the bottom of the chamber and size of the opening. In this sense, the manuscript presents a parametric approach to investigate, by experimental tests, the hydrodynamic properties and the performance of oscillating water column wave energy converter (OWC). The effects of some geometrical key parameters of the system are analyzed. The tests are carried out on a small‐size OWC. The work seems to be interesting in view of its experimental aspect. We have realized a prototype of an oscillating water column (OWC) which consists of a box (an air chamber) having the shape of parallelepipeds. The experimental results found by this study showed different optimums of: (a) the distance between the wave generator and the device (2 positions). (b) The depth of water in the hydraulic channel. (c) The immersion depth of the front wall of the chamber. (d) The opening at the bottom of the prototype. The results obtained show that the coupling of the geometrical parameters of the device and the conditions of installation leads to an improvement of the hydrodynamic performances of the OWC. The study also shows that the various optimums found give a considerable increase in the energy output. |
---|---|
ISSN: | 1679-396X 2199-4749 |
DOI: | 10.1007/s40868-022-00121-2 |