Further than Descartes' rule of signs
The {\em sign pattern} defined by the real polynomial \(Q:=\Sigma _{j=0}^da_jx^j\), \(a_j\neq 0\), is the string \(\sigma (Q):=({\rm sgn(}a_d{\rm )},\ldots ,{\rm sgn(}a_0{\rm )})\). The quantities \(pos\) and \(neg\) of positive and negative roots of \(Q\) satisfy Descartes' rule of signs. A co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The {\em sign pattern} defined by the real polynomial \(Q:=\Sigma _{j=0}^da_jx^j\), \(a_j\neq 0\), is the string \(\sigma (Q):=({\rm sgn(}a_d{\rm )},\ldots ,{\rm sgn(}a_0{\rm )})\). The quantities \(pos\) and \(neg\) of positive and negative roots of \(Q\) satisfy Descartes' rule of signs. A couple \((\sigma _0,(pos,neg))\), where \(\sigma _0\) is a sign pattern of length \(d+1\), is {\em realizable} if there exists a polynomial \(Q\) with \(pos\) positive and \(neg\) negative simple roots, with \((d-pos-neg)/2\) complex conjugate pairs and with \(\sigma (Q)=\sigma_0\). We present a series of couples (sign pattern, pair \((pos,neg)\)) depending on two integer parameters and with \(pos\geq 1\), \(neg\geq 1\), which is not realizable. For \(d=9\), we give the exhaustive list of realizable couples with two sign changes in the sign pattern. |
---|---|
ISSN: | 2331-8422 |