Existence and limit behavior of least energy solutions to constrained Schrödinger–Bopp–Podolsky systems in R3
Consider the following Schrödinger–Bopp–Podolsky system in R 3 under an L 2 -norm constraint, - Δ u + ω u + ϕ u = u | u | p - 2 , - Δ ϕ + a 2 Δ 2 ϕ = 4 π u 2 , ‖ u ‖ L 2 = ρ , where a , ρ > 0 are fixed, with our unknowns being u , ϕ : R 3 → R and ω ∈ R . We prove that if 2 < p < 3 (resp., 3...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2023, Vol.74 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the following Schrödinger–Bopp–Podolsky system in
R
3
under an
L
2
-norm constraint,
-
Δ
u
+
ω
u
+
ϕ
u
=
u
|
u
|
p
-
2
,
-
Δ
ϕ
+
a
2
Δ
2
ϕ
=
4
π
u
2
,
‖
u
‖
L
2
=
ρ
,
where
a
,
ρ
>
0
are fixed, with our unknowns being
u
,
ϕ
:
R
3
→
R
and
ω
∈
R
. We prove that if
2
<
p
<
3
(resp.,
3
<
p
<
10
/
3
) and
ρ
>
0
is sufficiently small (resp., sufficiently large), then this system admits a least energy solution. Moreover, we prove that if
2
<
p
<
14
/
5
and
ρ
>
0
is sufficiently small, then least energy solutions are radially symmetric up to translation, and as
a
→
0
, they converge to a least energy solution of the Schrödinger–Poisson–Slater system under the same
L
2
-norm constraint. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-023-01950-w |