Mattila–Sjölin Type Functions: A Finite Field Model
Let ϕ ( x , y ) : ℝ d × ℝ d → ℝ be a function. We say ϕ is a Mattila–Sjölin type function of index γ if γ is the smallest number satisfying the property that for any compact set E ⊂ ℝ d , ϕ ( E , E ) has a non-empty interior whenever dim H ( E ) > γ . The usual distance function, ϕ ( x , y ) = |...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2023-04, Vol.51 (2), p.421-434 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
ϕ
(
x
,
y
)
:
ℝ
d
×
ℝ
d
→
ℝ
be a function. We say
ϕ
is a
Mattila–Sjölin type function
of index
γ
if
γ
is the smallest number satisfying the property that for any compact set
E
⊂
ℝ
d
,
ϕ
(
E
,
E
) has a non-empty interior whenever
dim
H
(
E
)
>
γ
. The usual distance function,
ϕ
(
x
,
y
) = |
x
−
y
|, is conjectured to be a Mattila–Sjölin type function of index
d
2
. In the setting of finite fields
F
q
, this definition is equivalent to the statement that
ϕ
(
E
,
E
)
=
F
q
whenever |
E
|≫
q
γ
. The main purpose of this paper is to prove the existence of such functions with index
d
2
in the vector space
F
q
d
. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-021-00538-z |