Mattila–Sjölin Type Functions: A Finite Field Model

Let ϕ ( x , y ) : ℝ d × ℝ d → ℝ be a function. We say ϕ is a Mattila–Sjölin type function of index γ if γ is the smallest number satisfying the property that for any compact set E ⊂ ℝ d , ϕ ( E , E ) has a non-empty interior whenever dim H ( E ) > γ . The usual distance function, ϕ ( x , y ) = |...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2023-04, Vol.51 (2), p.421-434
Hauptverfasser: Cheong, Daewoong, Koh, Doowon, Pham, Thang, Shen, Chun-Yen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ϕ ( x , y ) : ℝ d × ℝ d → ℝ be a function. We say ϕ is a Mattila–Sjölin type function of index γ if γ is the smallest number satisfying the property that for any compact set E ⊂ ℝ d , ϕ ( E , E ) has a non-empty interior whenever dim H ( E ) > γ . The usual distance function, ϕ ( x , y ) = | x − y |, is conjectured to be a Mattila–Sjölin type function of index d 2 . In the setting of finite fields F q , this definition is equivalent to the statement that ϕ ( E , E ) = F q whenever | E |≫ q γ . The main purpose of this paper is to prove the existence of such functions with index d 2 in the vector space F q d .
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-021-00538-z