Development of a smart IoT‐based drip irrigation system for precision farming

Precision irrigation scheduling using real‐time sensors has the potential to boost water use efficiency while maximizing resource utilization. Traditional farming is adversely affected by improper resource management. To overcome a farmer's efforts, an IoT‐based drip irrigation system was devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Irrigation and drainage 2023-02, Vol.72 (1), p.21-37
Hauptverfasser: S, Vinod Kumar, Singh, Chandra Deep, Rao, K. V. Ramana, Kumar, Mukesh, Rajwade, Yogesh Annand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precision irrigation scheduling using real‐time sensors has the potential to boost water use efficiency while maximizing resource utilization. Traditional farming is adversely affected by improper resource management. To overcome a farmer's efforts, an IoT‐based drip irrigation system was developed and tested for system performance. It was compared with an ETc‐based drip irrigation system for brinjal crops grown in planter beds filled with vertisols. The developed system, consisting of sensors and microcontrollers, records the environmental parameters, namely, soil moisture content, soil temperature, and relative humidity and temperature. Irrigation scheduling was programmed using upper (field capacity) and lower thresholds (50% plant available water). Irrigation applications were triggered when the soil moisture value reached the lower threshold (33%) and ended after the field capacity was attained (46%). The information captured by the sensors is wirelessly uploaded to the cloud server using IoT technology, which can be accessed from anywhere in the world. It was observed that the IoT‐based drip irrigation testing plant grew 1.3 cm taller than the ETc‐based drip irrigation testing plant. The length and width of brinjal plant leaves also increased more than the ETc‐based drip irrigation treatments. The IoT‐based drip irrigation treatments improved pump operating time, leaf length and width by 85 min, 4.4 cm and 3.1 cm, respectively, compared to 125 min, 3.7 cm and 2.4 cm for the ETc‐based drip irrigation treatment. During a period of 31 days, water savings of 35% were observed compared to ETc‐based drip irrigation. The developed system was rugged, and a water‐resistant enclosure allowed its use in outdoor agriculture fields. Résumé La programmation de l'irrigation de précision à l'aide de capteurs en temps réel a le potentiel d'améliorer l'efficacité de l'utilisation de l'eau tout en maximisant l'utilisation des ressources. L'agriculture traditionnelle est affectée négativement en raison d'une mauvaise gestion des ressources. Pour surmonter les efforts d'un agriculteur, un système d'irrigation goutte à goutte basé sur l'IoT (Internet des choses) a été développé et testé pour la performance du système. Il a été comparé à un système d'irrigation goutte à goutte basé sur l'ETc pour les cultures de brinjal (aubergine) cultivées dans des lits de plantation remplis de vertisols. Le système développé, composé de capteurs et de microcontrôleurs, enregistre les pa
ISSN:1531-0353
1531-0361
DOI:10.1002/ird.2757