Comparison of the Properties of Defect States in Nitrogen‐Containing n‐ and p‐Type Float‐Zone Silicon: A Combined Deep‐Level Transient Spectroscopy and Minority‐Carrier Transient Spectroscopy Study

Defect states in nitrogen‐containing float‐zone silicon are investigated in both n‐ and p‐type materials using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a mapping of the defect landscape in the entire electronic bandgap and an inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2023-02, Vol.220 (3), p.n/a
Hauptverfasser: Scheffler, Leopold, Lei, Anders, Duun, Sune, Julsgaard, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 220
creator Scheffler, Leopold
Lei, Anders
Duun, Sune
Julsgaard, Brian
description Defect states in nitrogen‐containing float‐zone silicon are investigated in both n‐ and p‐type materials using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a mapping of the defect landscape in the entire electronic bandgap and an investigation of whether the properties of the defects depend on the semiconductor type. Two defects, the E1/E2 pair and the E4/E6 pair, are investigated, and no evidence is found for the defect properties to depend on the semiconductor type. The defect landscape of nitrogen‐containing float‐zone silicon is investigated using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a thorough comparison of the defect behavior in lowly doped n‐ and p‐type materials. The results of this comparison demonstrate that the properties of the studied defects do not depend on the semiconductor type.
doi_str_mv 10.1002/pssa.202200633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2773524677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773524677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3123-1955c4fc8236edf4a0e73e8114260f1d6ef87ebab5b303a8e976ea7ad25e27353</originalsourceid><addsrcrecordid>eNqFUclOwzAQtRBIQOHK2RLnFi_Zyq0qFJDKIqVcuEROMilGwTa2C8qNT-DX-AW-BIciOCFOM_P0lpEeQgeUjCgh7Mg4J0aMMEZIwvkG2qFZwoYJp-PNn52QbbTr3AMhURyldAe9T_WjEVY6rbBusL8HfGO1AesluB45gQYqj3MvfACkwlfSW70E9fH6NtXKC6mkWuL-xELV2IRl0RnAs1YLH447rQDnspWVVsd4gkNgKRXUwRl68hyeocULK5SToEKSCXlWu0qb7svxUiptpe_6QGGtBPsXO_eruttDW41oHex_zwG6nZ0upufD-fXZxXQyH1acMj6k4ziuoqbKGE-gbiJBIOWQURqxhDS0TqDJUihFGZeccJHBOE1ApKJmMbCUx3yADte-xuqnFThfPOiVVSGyYGkgsCgJY4BGa1YVnnQWmsJY-ShsV1BS9LUVfW3FT21BMF4LXmQL3T_s4ibPJ7_aT2VXpqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773524677</pqid></control><display><type>article</type><title>Comparison of the Properties of Defect States in Nitrogen‐Containing n‐ and p‐Type Float‐Zone Silicon: A Combined Deep‐Level Transient Spectroscopy and Minority‐Carrier Transient Spectroscopy Study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scheffler, Leopold ; Lei, Anders ; Duun, Sune ; Julsgaard, Brian</creator><creatorcontrib>Scheffler, Leopold ; Lei, Anders ; Duun, Sune ; Julsgaard, Brian</creatorcontrib><description>Defect states in nitrogen‐containing float‐zone silicon are investigated in both n‐ and p‐type materials using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a mapping of the defect landscape in the entire electronic bandgap and an investigation of whether the properties of the defects depend on the semiconductor type. Two defects, the E1/E2 pair and the E4/E6 pair, are investigated, and no evidence is found for the defect properties to depend on the semiconductor type. The defect landscape of nitrogen‐containing float‐zone silicon is investigated using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a thorough comparison of the defect behavior in lowly doped n‐ and p‐type materials. The results of this comparison demonstrate that the properties of the studied defects do not depend on the semiconductor type.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200633</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>deep-level transient spectroscopy ; Defects ; float-zone silicon ; minority-carrier transient spectroscopy ; Nitrogen ; Silicon ; vacancies</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-02, Vol.220 (3), p.n/a</ispartof><rights>2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3123-1955c4fc8236edf4a0e73e8114260f1d6ef87ebab5b303a8e976ea7ad25e27353</cites><orcidid>0000-0003-3082-1910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200633$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200633$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Scheffler, Leopold</creatorcontrib><creatorcontrib>Lei, Anders</creatorcontrib><creatorcontrib>Duun, Sune</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><title>Comparison of the Properties of Defect States in Nitrogen‐Containing n‐ and p‐Type Float‐Zone Silicon: A Combined Deep‐Level Transient Spectroscopy and Minority‐Carrier Transient Spectroscopy Study</title><title>Physica status solidi. A, Applications and materials science</title><description>Defect states in nitrogen‐containing float‐zone silicon are investigated in both n‐ and p‐type materials using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a mapping of the defect landscape in the entire electronic bandgap and an investigation of whether the properties of the defects depend on the semiconductor type. Two defects, the E1/E2 pair and the E4/E6 pair, are investigated, and no evidence is found for the defect properties to depend on the semiconductor type. The defect landscape of nitrogen‐containing float‐zone silicon is investigated using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a thorough comparison of the defect behavior in lowly doped n‐ and p‐type materials. The results of this comparison demonstrate that the properties of the studied defects do not depend on the semiconductor type.</description><subject>deep-level transient spectroscopy</subject><subject>Defects</subject><subject>float-zone silicon</subject><subject>minority-carrier transient spectroscopy</subject><subject>Nitrogen</subject><subject>Silicon</subject><subject>vacancies</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUclOwzAQtRBIQOHK2RLnFi_Zyq0qFJDKIqVcuEROMilGwTa2C8qNT-DX-AW-BIciOCFOM_P0lpEeQgeUjCgh7Mg4J0aMMEZIwvkG2qFZwoYJp-PNn52QbbTr3AMhURyldAe9T_WjEVY6rbBusL8HfGO1AesluB45gQYqj3MvfACkwlfSW70E9fH6NtXKC6mkWuL-xELV2IRl0RnAs1YLH447rQDnspWVVsd4gkNgKRXUwRl68hyeocULK5SToEKSCXlWu0qb7svxUiptpe_6QGGtBPsXO_eruttDW41oHex_zwG6nZ0upufD-fXZxXQyH1acMj6k4ziuoqbKGE-gbiJBIOWQURqxhDS0TqDJUihFGZeccJHBOE1ApKJmMbCUx3yADte-xuqnFThfPOiVVSGyYGkgsCgJY4BGa1YVnnQWmsJY-ShsV1BS9LUVfW3FT21BMF4LXmQL3T_s4ibPJ7_aT2VXpqE</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Scheffler, Leopold</creator><creator>Lei, Anders</creator><creator>Duun, Sune</creator><creator>Julsgaard, Brian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3082-1910</orcidid></search><sort><creationdate>202302</creationdate><title>Comparison of the Properties of Defect States in Nitrogen‐Containing n‐ and p‐Type Float‐Zone Silicon: A Combined Deep‐Level Transient Spectroscopy and Minority‐Carrier Transient Spectroscopy Study</title><author>Scheffler, Leopold ; Lei, Anders ; Duun, Sune ; Julsgaard, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3123-1955c4fc8236edf4a0e73e8114260f1d6ef87ebab5b303a8e976ea7ad25e27353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>deep-level transient spectroscopy</topic><topic>Defects</topic><topic>float-zone silicon</topic><topic>minority-carrier transient spectroscopy</topic><topic>Nitrogen</topic><topic>Silicon</topic><topic>vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheffler, Leopold</creatorcontrib><creatorcontrib>Lei, Anders</creatorcontrib><creatorcontrib>Duun, Sune</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheffler, Leopold</au><au>Lei, Anders</au><au>Duun, Sune</au><au>Julsgaard, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Properties of Defect States in Nitrogen‐Containing n‐ and p‐Type Float‐Zone Silicon: A Combined Deep‐Level Transient Spectroscopy and Minority‐Carrier Transient Spectroscopy Study</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-02</date><risdate>2023</risdate><volume>220</volume><issue>3</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Defect states in nitrogen‐containing float‐zone silicon are investigated in both n‐ and p‐type materials using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a mapping of the defect landscape in the entire electronic bandgap and an investigation of whether the properties of the defects depend on the semiconductor type. Two defects, the E1/E2 pair and the E4/E6 pair, are investigated, and no evidence is found for the defect properties to depend on the semiconductor type. The defect landscape of nitrogen‐containing float‐zone silicon is investigated using both deep‐level transient spectroscopy (DLTS) and minority‐carrier transient spectroscopy (MCTS). This enables a thorough comparison of the defect behavior in lowly doped n‐ and p‐type materials. The results of this comparison demonstrate that the properties of the studied defects do not depend on the semiconductor type.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200633</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3082-1910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2023-02, Vol.220 (3), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2773524677
source Wiley Online Library Journals Frontfile Complete
subjects deep-level transient spectroscopy
Defects
float-zone silicon
minority-carrier transient spectroscopy
Nitrogen
Silicon
vacancies
title Comparison of the Properties of Defect States in Nitrogen‐Containing n‐ and p‐Type Float‐Zone Silicon: A Combined Deep‐Level Transient Spectroscopy and Minority‐Carrier Transient Spectroscopy Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Properties%20of%20Defect%20States%20in%20Nitrogen%E2%80%90Containing%20n%E2%80%90%20and%20p%E2%80%90Type%20Float%E2%80%90Zone%20Silicon:%20A%20Combined%20Deep%E2%80%90Level%20Transient%20Spectroscopy%20and%20Minority%E2%80%90Carrier%20Transient%20Spectroscopy%20Study&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Scheffler,%20Leopold&rft.date=2023-02&rft.volume=220&rft.issue=3&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200633&rft_dat=%3Cproquest_cross%3E2773524677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773524677&rft_id=info:pmid/&rfr_iscdi=true