The Maximal Number of 3-Term Arithmetic Progressions in Finite Sets in Different Geometries
Green and Sisask showed that the maximal number of 3-term arithmetic progressions in n -element sets of integers is ⌈ n 2 / 2 ⌉ ; it is easy to see that the same holds if the set of integers is replaced by the real line or by any Euclidean space. We study this problem in general metric spaces, where...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2023-03, Vol.69 (2), p.543-567 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Green and Sisask showed that the maximal number of 3-term arithmetic progressions in
n
-element sets of integers is
⌈
n
2
/
2
⌉
; it is easy to see that the same holds if the set of integers is replaced by the real line or by any Euclidean space. We study this problem in general metric spaces, where a triple (
a
,
b
,
c
) of points in a metric space is considered a 3-
term arithmetic progression
if
d
(
a
,
b
)
=
d
(
b
,
c
)
=
d
(
a
,
c
)
/
2
. In particular, we show that the result of Green and Sisask extends to any Cartan–Hadamard manifold (in particular, to the hyperbolic spaces), but does not hold in spherical geometry or in the
r
-regular tree, for any
r
≥
3
. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-021-00365-6 |