Dynamics of Newton maps

In this paper, we study the dynamics of the Newton maps for arbitrary polynomials. Let p be an arbitrary polynomial with at least three distinct roots, and f be its Newton map. It is shown that the boundary $\partial B$ of any immediate root basin B of f is locally connected. Moreover, $\partial B$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2023-03, Vol.43 (3), p.1035-1080
Hauptverfasser: WANG, XIAOGUANG, YIN, YONGCHENG, ZENG, JINSONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the dynamics of the Newton maps for arbitrary polynomials. Let p be an arbitrary polynomial with at least three distinct roots, and f be its Newton map. It is shown that the boundary $\partial B$ of any immediate root basin B of f is locally connected. Moreover, $\partial B$ is a Jordan curve if and only if $\mathrm {deg}(f|_B)=2$ . This implies that the boundaries of all components of root basins, for the Newton maps for all polynomials, from the viewpoint of topology, are tame.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2021.168