Dynamics of Newton maps
In this paper, we study the dynamics of the Newton maps for arbitrary polynomials. Let p be an arbitrary polynomial with at least three distinct roots, and f be its Newton map. It is shown that the boundary $\partial B$ of any immediate root basin B of f is locally connected. Moreover, $\partial B$...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2023-03, Vol.43 (3), p.1035-1080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the dynamics of the Newton maps for arbitrary polynomials. Let p be an arbitrary polynomial with at least three distinct roots, and f be its Newton map. It is shown that the boundary
$\partial B$
of any immediate root basin B of f is locally connected. Moreover,
$\partial B$
is a Jordan curve if and only if
$\mathrm {deg}(f|_B)=2$
. This implies that the boundaries of all components of root basins, for the Newton maps for all polynomials, from the viewpoint of topology, are tame. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2021.168 |