Analyticity of Steklov Eigenvalues in nearly-hyperspherical domains in \mathbb{R}^{d+1}

We consider the Dirichlet-to-Neumann operator (DNO) on nearly-hyperspherical domains in dimension greater than 3. Treating such domains as perturbations of the ball, we prove the analytic dependence of the DNO on the shape perturbation parameter for fixed perturbation functions. Consequently, we con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Chee Han Tan, Viator, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Dirichlet-to-Neumann operator (DNO) on nearly-hyperspherical domains in dimension greater than 3. Treating such domains as perturbations of the ball, we prove the analytic dependence of the DNO on the shape perturbation parameter for fixed perturbation functions. Consequently, we conclude that the Steklov eigenvalues are analytic in the shape perturbation parameter as well. To obtain these results, we use the strategy of Nicholls and Nigam (2004), and of Viator and Osting (2020); we transform the Laplace-Dirichlet problem on the perturbed domain to a more complicated, parameter-dependent equation on the ball, and then geometrically bound the Neumann expansion of the transformed DNO. These results are a generalization of the work of Viator and Osting (2020) for dimension 2 and 3.
ISSN:2331-8422