Global solutions to the 3D compressible Navier–Stokes equations with a class of special initial data
In this paper, we consider the Cauchy problem of tri-dimensional compressible Navier–Stokes equations and construct global smooth solutions by choosing a class of new special initial velocity and density whose Ḃ2,∞−s-norm can be arbitrarily large and improve the previous result in Li et al. [J. Mat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2023-02, Vol.64 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the Cauchy problem of tri-dimensional compressible Navier–Stokes equations and construct global smooth solutions by choosing a class of new special initial velocity and density whose Ḃ2,∞−s-norm can be arbitrarily large and improve the previous result in Li et al. [J. Math. Fluid Mech. 24, 22 (2022)]. Our main idea is splitting the linearized equations from the compressible Navier–Stokes equations and exploring the damping effect of the linearized system. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0086787 |