Global solutions to the 3D compressible Navier–Stokes equations with a class of special initial data

In this paper, we consider the Cauchy problem of tri-dimensional compressible Navier–Stokes equations and construct global smooth solutions by choosing a class of new special initial velocity and density whose Ḃ2,∞−s-norm can be arbitrarily large and improve the previous result in Li et al. [J. Mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-02, Vol.64 (2)
Hauptverfasser: Yu, Yanghai, Wang, Hui, Li, Jinlu, Yang, Xiaolei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the Cauchy problem of tri-dimensional compressible Navier–Stokes equations and construct global smooth solutions by choosing a class of new special initial velocity and density whose Ḃ2,∞−s-norm can be arbitrarily large and improve the previous result in Li et al. [J. Math. Fluid Mech. 24, 22 (2022)]. Our main idea is splitting the linearized equations from the compressible Navier–Stokes equations and exploring the damping effect of the linearized system.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0086787