On Non-Empty Cross-Intersecting Families
Let 2 [ n ] and ( [ n ] i ) be the power set and the collection of all i -subsets of {1, 2, …, n }, respectively. We call t ( t ≥ 2) families A 1 , A 2 , … , A t ⊆ 2 [ n ] cross-intersecting if A i ∩ A j ≠ ∅ for any A i ∈ A i and A j ∈ A j with i ≠ j . We show that, for n ≥ k + l, l ≥ r ≥ 1, c >...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2022-12, Vol.42 (Suppl 2), p.1513-1525 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let 2
[
n
]
and (
[
n
]
i
) be the power set and the collection of all
i
-subsets of {1, 2, …,
n
}, respectively. We call
t
(
t
≥ 2) families
A
1
,
A
2
,
…
,
A
t
⊆
2
[
n
]
cross-intersecting
if
A
i
∩
A
j
≠ ∅ for any
A
i
∈
A
i
and
A
j
∈
A
j
with
i
≠
j
. We show that, for
n
≥
k
+
l, l
≥
r
≥ 1,
c
> 0 and
A
⊆
(
[
n
]
k
)
,
ℬ
⊆
(
[
n
]
l
)
, if
A
and
ℬ
are cross-intersecting and
(
n
−
r
l
−
r
)
≤
|
ℬ
|
≤
(
n
−
1
l
−
1
)
, then
|
A
|
+
c
|
ℬ
|
≤
max
{
(
n
k
)
−
(
n
−
r
k
)
+
c
(
n
−
r
l
−
r
)
,
(
n
−
1
k
−
1
)
+
c
(
n
−
1
l
−
1
)
}
.
This implies a result of Tokushige and the second author (Theorem 3.1) and also yields that, for
n
≥ 2
k
, if
A
1
,
A
2
,
…
,
A
t
⊆
(
[
n
]
k
)
are non-empty cross-intersecting, then
∑
i
=
1
t
|
A
i
|
≤
max
{
(
n
k
)
−
(
n
−
k
k
)
+
t
−
1
,
t
(
n
−
1
k
−
1
)
}
,
which generalizes the corresponding result of Hilton and Milner for
t
= 2. Moreover, the extremal families attaining the two upper bounds above are also characterized. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-021-4839-4 |