Unsteady dissipation scaling in static- and active-grid turbulence

A new time-dependent analysis of the global and local fluctuating velocity signals in grid turbulence is conducted to assess the scaling laws for non-equilibrium turbulence. Experimental datasets of static- and active-grid turbulence with different Rossby numbers $R_o({=}U/\varOmega M$: $U$ is the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-02, Vol.956, Article A20
Hauptverfasser: Zheng, Yulin, Nakamura, Kohtaro, Nagata, Koji, Watanabe, Tomoaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new time-dependent analysis of the global and local fluctuating velocity signals in grid turbulence is conducted to assess the scaling laws for non-equilibrium turbulence. Experimental datasets of static- and active-grid turbulence with different Rossby numbers $R_o({=}U/\varOmega M$: $U$ is the mean velocity, $\varOmega$ is the mean rotation rate and $M$ is the grid mesh size) are considered. Although the global (long-time-averaged) non-dimensional dissipation rate $C_\varepsilon$ is independent of the Reynolds number $Re_\lambda$ based on the global Taylor microscale, the local (short-time-averaged) non-dimensional dissipation rate $\left \langle C_\varepsilon (t_i) \right \rangle$ ($t_i$ is the local time) both in the static- and active-grid turbulence clearly show the non-equilibrium scaling $\left \langle C_\varepsilon (t_i)\right \rangle / \sqrt {Re_0} \propto \left \langle Re_\lambda (t_i) \right \rangle ^{-1}$ ($\left \langle Re_\lambda (t_i) \right \rangle$ and $Re_0$ are the Reynolds numbers based on the local Taylor microscale $\lambda (t_i)$ and the global integral length scale, respectively), which has only been confirmed for global statistics in the near field of grid turbulence. The local value of $\left \langle L(t_i) / \lambda (t_i) \right \rangle$ ($L(t_i)$ is the local integral length scale) shifts from the equilibrium to non-equilibrium scaling as $\left \langle Re_\lambda (t_i) \right \rangle$ increases, further confirming that the non-equilibrium scalings are recovered for local statistics both in the static- and active-grid turbulence. The local values of $\left \langle C_\varepsilon (t_i) \right \rangle$ and $\left \langle L(t_i) / \lambda (t_i) \right \rangle$ follow the theoretical predictions for global statistics (Bos & Rubinstein, Phys. Rev. Fluids, vol. 2, 2017, 022601).
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2022.937