Asymptotic and Finite-Time Semistability for Nonlinear Discrete-Time Systems With Application to Network Consensus
This article focuses on semistability and finite-time semistability analysis and synthesis of discrete-time dynamical systems having a continuum of equilibria. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-02, Vol.68 (2), p.766-781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article focuses on semistability and finite-time semistability analysis and synthesis of discrete-time dynamical systems having a continuum of equilibria. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial conditions. In this article, we build on the theories of semistability and finite-time semistability for continuous-time dynamical systems to develop a rigorous framework for discrete semistability and discrete finite-time semistability. Specifically, Lyapunov and converse Lyapunov theorems for semistability and finite-time semistability are developed, and the regularity properties of the Lyapunov function establishing finite-time semistability are shown to be related to the settling time function capturing the finite settling time behavior of the dynamical system. These results are then used to develop a general framework for designing semistable and finite-time semistable consensus protocols for discrete dynamical networks for achieving multiagent coordination tasks asymptotically and in finite time. The proposed controller architectures involve the exchange of generalized energy state information between agents guaranteeing that the closed-loop dynamical network is semistable to an equipartitioned equilibrium representing a state of consensus consistent with basic thermodynamic principles. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3142189 |