VAE-Based Latent Representations Learning for Botnet Detection in IoT Networks

Botnets pose significant threats to cybersecurity. The infected Internet of Things (IoT) devices are used to launch unsupported malicious activities on target entities to disrupt their operations and services. To address this danger, we propose a machine learning-based method, for detecting botnets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of network and systems management 2023-03, Vol.31 (1), p.4, Article 4
Hauptverfasser: Snoussi, Ramzi, Youssef, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Botnets pose significant threats to cybersecurity. The infected Internet of Things (IoT) devices are used to launch unsupported malicious activities on target entities to disrupt their operations and services. To address this danger, we propose a machine learning-based method, for detecting botnets by analyzing network traffic data flow including various types of botnet attacks. Our method uses a hybrid model where a Variational AutoEncoder (VAE) is trained in an unsupervised manner to learn latent representations that describe the benign traffic data, and one-class classifier (OCC) for detecting anomaly (also called novelty detection). The main aim of this research is to learn the discriminating representations of the normal data in low dimensional latent space generated by VAE, and thus improve the predictive power of the OCC to detect malicious traffic. We have evaluated the performance of our model, and compared it against baseline models using a real network based dataset, containing popular IoT devices, and presenting a wide variety of attacks from two recent botnet families Mirai and Bashlite. Tests showed that our model can detect botnets with a satisfactory performance.
ISSN:1064-7570
1573-7705
DOI:10.1007/s10922-022-09690-4