Scaling limits for fractional polyharmonic Gaussian fields
This work is concerned with fractional Gaussian fields, i.e. Gaussian fields whose covariance operator is given by the inverse fractional Laplacian \((-\Delta)^{-s}\) (where, in particular, we include the case \(s >1\)). We define a lattice discretization of these fields and show that their scali...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work is concerned with fractional Gaussian fields, i.e. Gaussian fields whose covariance operator is given by the inverse fractional Laplacian \((-\Delta)^{-s}\) (where, in particular, we include the case \(s >1\)). We define a lattice discretization of these fields and show that their scaling limits -- with respect to the optimal Besov space topology (up to an endpoint case) -- are the original continuous fields. As a byproduct, in dimension \(d |
---|---|
ISSN: | 2331-8422 |