Scaling limits for fractional polyharmonic Gaussian fields

This work is concerned with fractional Gaussian fields, i.e. Gaussian fields whose covariance operator is given by the inverse fractional Laplacian \((-\Delta)^{-s}\) (where, in particular, we include the case \(s >1\)). We define a lattice discretization of these fields and show that their scali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: De Nitti, Nicola, Schweiger, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is concerned with fractional Gaussian fields, i.e. Gaussian fields whose covariance operator is given by the inverse fractional Laplacian \((-\Delta)^{-s}\) (where, in particular, we include the case \(s >1\)). We define a lattice discretization of these fields and show that their scaling limits -- with respect to the optimal Besov space topology (up to an endpoint case) -- are the original continuous fields. As a byproduct, in dimension \(d
ISSN:2331-8422