An alternative equation for generalized monomials
In this paper we consider a generalized monomial or polynomial f : R → R that satisfies the additional equation f ( x ) f ( y ) = 0 for the pairs ( x , y ) ∈ D , where D ⊆ R 2 is given by some algebraic condition. In the particular cases when f is a generalized polynomial and there exist non-constan...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2023-02, Vol.97 (1), p.113-120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider a generalized monomial or polynomial
f
:
R
→
R
that satisfies the additional equation
f
(
x
)
f
(
y
)
=
0
for the pairs
(
x
,
y
)
∈
D
, where
D
⊆
R
2
is given by some algebraic condition. In the particular cases when
f
is a generalized polynomial and there exist non-constant regular polynomials
p
and
q
that fulfill
D
=
{
(
p
(
t
)
,
q
(
t
)
)
|
t
∈
R
}
or
f
is a generalized monomial and there exists a positive rational
m
fulfilling
D
=
{
(
x
,
y
)
∈
R
2
|
x
2
-
m
y
2
=
1
}
,
we prove that
f
(
x
)
=
0
for all
x
∈
R
. |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-022-00917-y |