Theory+AI/ML for microscopy and spectroscopy: Challenges and opportunities

Advances in instrumentation for experimental characterization of materials such as microscopy and spectroscopy have led to an explosion in information available on materials chemistry, structures, and transformations. But the interpretation of microscopy and spectroscopy data is increasingly challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2022-10, Vol.47 (10), p.1024-1035
Hauptverfasser: Unruh, Davis, Kolluru, Venkata Surya Chaitanya, Baskaran, Arun, Chen, Yiming, Chan, Maria K. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in instrumentation for experimental characterization of materials such as microscopy and spectroscopy have led to an explosion in information available on materials chemistry, structures, and transformations. But the interpretation of microscopy and spectroscopy data is increasingly challenging due to the increasing volume and complexity of these data. In this article, we discuss the use of theoretical modeling, artificial intelligence/machine learning (AI/ML), and AI/ML in conjunction with theory, for the interpretation of microscopy and spectroscopy data. Graphical abstract
ISSN:0883-7694
1938-1425
DOI:10.1557/s43577-022-00446-8