Limitless stability for Graph Convolutional Networks
This work establishes rigorous, novel and widely applicable stability guarantees and transferability bounds for graph convolutional networks -- without reference to any underlying limit object or statistical distribution. Crucially, utilized graph-shift operators (GSOs) are not necessarily assumed t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work establishes rigorous, novel and widely applicable stability guarantees and transferability bounds for graph convolutional networks -- without reference to any underlying limit object or statistical distribution. Crucially, utilized graph-shift operators (GSOs) are not necessarily assumed to be normal, allowing for the treatment of networks on both undirected- and for the first time also directed graphs. Stability to node-level perturbations is related to an 'adequate (spectral) covering' property of the filters in each layer. Stability to edge-level perturbations is related to Lipschitz constants and newly introduced semi-norms of filters. Results on stability to topological perturbations are obtained through recently developed mathematical-physics based tools. As an important and novel example, it is showcased that graph convolutional networks are stable under graph-coarse-graining procedures (replacing strongly-connected sub-graphs by single nodes) precisely if the GSO is the graph Laplacian and filters are regular at infinity. These new theoretical results are supported by corresponding numerical investigations. |
---|---|
ISSN: | 2331-8422 |