The calcination temperature effect in the synthesis of nanohydroxyapatite: characterization and its application as a nanocarrier

Drug delivery is the process of administering drugs at a specific amount in a specific site. Hydroxyapatite (HA) is reported as a drug carrier because of its unique properties such as high biodegradability, biocompatibility and drug-loading capacity, easy preparation, sterilization and cost-effectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2023, Vol.13 (1), p.213-219
Hauptverfasser: Mohammadi, F., Hosseini, Sh, Khaksar, S., Chekin, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drug delivery is the process of administering drugs at a specific amount in a specific site. Hydroxyapatite (HA) is reported as a drug carrier because of its unique properties such as high biodegradability, biocompatibility and drug-loading capacity, easy preparation, sterilization and cost-effective production. In the present study, the nanohydroxyapatite was synthesized at various calcination temperatures by the sol–gel route. The results revealed that the synthesized HA at 700 °C had the highest crystallinity. Moreover, the loading content of ampicillin was studied on HA samples synthesized at different calcination temperatures. It is considered that synthesized HA at 500 °C provided appropriate surface for ampicillin loading. The synthesized HA was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared and UV/Vis spectroscopy techniques before and after ampicillin loading.
ISSN:2190-5509
2190-5517
DOI:10.1007/s13204-020-01603-8