Fuzzy Adaptive Control Law for Trajectory Tracking Based on a Fuzzy Adaptive Neural PID Controller of a Multi-rotor Unmanned Aerial Vehicle

This article presents a fuzzy adaptive control law (FACL) designed for tracking the trajectory of a low-scale unmanned aerial vehicle (UAV), based on a new fuzzy adaptive neural proportional integral derivative (FANPID) controller. FACL estimates the angles of rotation, if the reference trajectory i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems automation, and systems, 2023-02, Vol.21 (2), p.658-670
Hauptverfasser: Mendoza, Abigail María Elena Ramírez, Yu, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a fuzzy adaptive control law (FACL) designed for tracking the trajectory of a low-scale unmanned aerial vehicle (UAV), based on a new fuzzy adaptive neural proportional integral derivative (FANPID) controller. FACL estimates the angles of rotation, if the reference trajectory is proposed, applying the adaptivity of the new FANPID-Lyapunov controller. UAV parameters were previously identified using the fuzzy adaptive neurons (FAN) method and experimental aerodynamic data. FANPID-Lyapunov controller optimizes trajectory tracking and stability analysis is performed. The FACL simulation results obtained in Matlab®/Simulink show the effectiveness, adaptivity and optimization of the flight control system, because it self-tunes the angles satisfactorily, adapts the gains and parameter for the FANPID-Lyapunov-Fuzzy controller, and reduces the error considerably compared to the controllers PID-Fixed gains, PID-Fuzzy adaptive gains, PID-Lyapunov-Fixed gains, and FOPID-Lyapunov-Fuzzy adaptive gains and parameters.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-021-0299-2