Fuzzy Adaptive Control Law for Trajectory Tracking Based on a Fuzzy Adaptive Neural PID Controller of a Multi-rotor Unmanned Aerial Vehicle
This article presents a fuzzy adaptive control law (FACL) designed for tracking the trajectory of a low-scale unmanned aerial vehicle (UAV), based on a new fuzzy adaptive neural proportional integral derivative (FANPID) controller. FACL estimates the angles of rotation, if the reference trajectory i...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems automation, and systems, 2023-02, Vol.21 (2), p.658-670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a fuzzy adaptive control law (FACL) designed for tracking the trajectory of a low-scale unmanned aerial vehicle (UAV), based on a new fuzzy adaptive neural proportional integral derivative (FANPID) controller. FACL estimates the angles of rotation, if the reference trajectory is proposed, applying the adaptivity of the new FANPID-Lyapunov controller. UAV parameters were previously identified using the fuzzy adaptive neurons (FAN) method and experimental aerodynamic data. FANPID-Lyapunov controller optimizes trajectory tracking and stability analysis is performed. The FACL simulation results obtained in Matlab®/Simulink show the effectiveness, adaptivity and optimization of the flight control system, because it self-tunes the angles satisfactorily, adapts the gains and parameter for the FANPID-Lyapunov-Fuzzy controller, and reduces the error considerably compared to the controllers PID-Fixed gains, PID-Fuzzy adaptive gains, PID-Lyapunov-Fixed gains, and FOPID-Lyapunov-Fuzzy adaptive gains and parameters. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-021-0299-2 |