On \(\lambda-\) Pseudo bi-starlike functions related with Fibonacci numbers
In this paper we define a new subclass \(\lambda\)-bi-pseudo-starlike functions of \(\Sigma\) related to shell-like curves connected with Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for \(f\in\mathcal{PSL}_{\Sigma}^\lambda(\tilde{p}(z)).\) Furthe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we define a new subclass \(\lambda\)-bi-pseudo-starlike functions of \(\Sigma\) related to shell-like curves connected with Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for \(f\in\mathcal{PSL}_{\Sigma}^\lambda(\tilde{p}(z)).\) Further we determine the Fekete-Szeg\"{o} result for the function class \(\mathcal{PSL}_{\Sigma}^\lambda(\tilde{p}(z))\) and for special cases, corollaries are stated which some of them are new and have not been studied so far. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2301.11698 |