On \(\lambda-\) Pseudo bi-starlike functions related with Fibonacci numbers

In this paper we define a new subclass \(\lambda\)-bi-pseudo-starlike functions of \(\Sigma\) related to shell-like curves connected with Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for \(f\in\mathcal{PSL}_{\Sigma}^\lambda(\tilde{p}(z)).\) Furthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Kaliyappan Vijaya, Gangadharan Murugusundaramoorthy, Hatun Özlem Güney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we define a new subclass \(\lambda\)-bi-pseudo-starlike functions of \(\Sigma\) related to shell-like curves connected with Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for \(f\in\mathcal{PSL}_{\Sigma}^\lambda(\tilde{p}(z)).\) Further we determine the Fekete-Szeg\"{o} result for the function class \(\mathcal{PSL}_{\Sigma}^\lambda(\tilde{p}(z))\) and for special cases, corollaries are stated which some of them are new and have not been studied so far.
ISSN:2331-8422
DOI:10.48550/arxiv.2301.11698