A Novel Model Predictive Current Control for Asymmetrical Six-Phase PMSM Drives with an Optimum Duty-cycle Calculation Scheme
This paper presents a novel model predictive current control (MPCC) with an optimum duty-cycle calculation scheme for asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drives. The proposed method takes advantages of the steady-state performance improvement and the weighting factor...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel model predictive current control (MPCC) with an optimum duty-cycle calculation scheme for asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drives. The proposed method takes advantages of the steady-state performance improvement and the weighting factor elimination. Both merits are owing to the optimum duty-cycle calculation scheme. On the one hand, for the α-β subspace, the optimal voltage vector set (VVS) is chosen from twelve ones and the corresponding optimal duty cycles are calculated using the proposed scheme. On the other hand, for the x-y subspace, the VVS can be determined according to that of α-β subspace and the optimal duty cycles are deduced using the same scheme. The voltage vector references in two subspaces are then obtained, and they are transformed to six-phase voltages for controlling the six-phase inverter. The proposed method is verified by experimental results based on a 2 kW ASPMSM prototype. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3238403 |