A Novel Method for Recognizing Traffic Signs using Color and Texture Properties using the ELM Algorithm
Road accidents cause a lot of financial and human losses every year. One of the causes of these accidents is human error, and the driver ignores traffic signs. Therefore, accurate detection of these signs will help to increase the safety of drivers and pedestrians and reduce accidents. In recent yea...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2022, Vol.13 (12) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Road accidents cause a lot of financial and human losses every year. One of the causes of these accidents is human error, and the driver ignores traffic signs. Therefore, accurate detection of these signs will help to increase the safety of drivers and pedestrians and reduce accidents. In recent years, much research has been done to increase the accuracy of panel recognition, most of which are problems that affect the diagnosis, such as adverse weather conditions, light reflection, and complex backgrounds. In the present study, considering the diversity of traffic signs' geometric shapes, the sign detection part has been done using a torsional neural network. Then, in the feature extraction section, we used LBP and HOG techniques, and at the end, the section was identified and classified using the ELM algorithm. The results obtained on 12569 images, 75% of which were used for training and 25% for experimentation, show that the accuracy of this research has improved by 95% compared to the essential work by 93%. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2022.0131208 |