Changes in bark properties and hydrology following prescribed fire in Pinus taeda and Quercus montana

In the eastern United States, the use of prescribed fire as a silvicultural technique to manage for desirable upland tree species is increasing in popularity. Bark physical properties such as thickness, density, and porosity have known associations with fire tolerance among species. These physical p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2023-01, Vol.37 (1), p.n/a
Hauptverfasser: Siegert, Courtney, Ilek, Anna, Wade, Adam, Schweitzer, Callie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the eastern United States, the use of prescribed fire as a silvicultural technique to manage for desirable upland tree species is increasing in popularity. Bark physical properties such as thickness, density, and porosity have known associations with fire tolerance among species. These physical properties simultaneously influence rainfall interception and canopy storage and thus are of interest across a range of disciplines. Furthermore, while these characteristics are innate to a species, it is unknown whether repeated exposure to fire facilitates physical change in bark structure and whether these changes are consistent among species. To answer these questions, bark samples were collected from mature pine (Pinus taeda L.) and oak (Quercus montana Willd.) trees from sites across the Bankhead National Forest in Alabama, USA under three different burn regimes: 3‐year cycle, 9‐year cycle, and no fire. Samples were analysed in the laboratory for bulk density, porosity, water storage capacity, and hygroscopicity (the amount of atmospheric water vapour absorbed by bark during non‐rainfall conditions). Drying rates of saturated samples under simulated wetting conditions were also assessed. Oak bark had higher bulk density, lower porosity, and dried slower than pine bark. Interestingly, bark from both species had lower bulk density, higher porosity, greater water storage capacity, and dried faster in stands that were burned every 3 years compared to other fire regimes (p 
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.14799