A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities

This paper considers a class of degenerate quasilinear elliptic equations with discontinuous nonlinearities. The existence of positive weak solutions and S-solutions is discussed using variational methods. The results assert that the ( λ , a ) -space of the parameters involved is divided into three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-04, Vol.62 (3), Article 91
Hauptverfasser: Santos, Jefferson Abrantes, Pontes, Pedro F. Silva, Soares, Sergio H. Monari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a class of degenerate quasilinear elliptic equations with discontinuous nonlinearities. The existence of positive weak solutions and S-solutions is discussed using variational methods. The results assert that the ( λ , a ) -space of the parameters involved is divided into three regions - no solution, at least one S-solution, and at least two weak solutions (one is S-solution among them), in each region respectively. The regions are separated by a continuous, nondecreasing curve and line segment. Further, there exists an S-solution at each point on the separating curve.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02437-2