Experimental challenges for high-mass matter-wave interference with nanoparticles

We discuss recent advances towards matter-wave interference experiments with free beams of metallic and dielectric nanoparticles. They require a brilliant source, an efficient detection scheme and a coherent method to divide the de Broglie waves associated with these clusters: We describe an approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Pedalino, Sebastian, Bruno Ramírez Galindo, de Sousa, Tomas, Fein, Yaakov Y, Geyer, Philipp, Gerlich, Stefan, Arndt, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss recent advances towards matter-wave interference experiments with free beams of metallic and dielectric nanoparticles. They require a brilliant source, an efficient detection scheme and a coherent method to divide the de Broglie waves associated with these clusters: We describe an approach based on a magnetron sputtering source which ejects an intense cluster beam with a wide mass dispersion but a small velocity spread of 10%. The source is universal as it can be used with all conducting and many semiconducting or even insulating materials. Here we focus on metals and dielectrics with a low work function of the bulk and thus a low cluster ionization energy. This allows us to realize photoionization gratings as coherent matter-wave beam splitters and also to realize an efficient ionization detection scheme. These new methods are now combined in an upgraded Talbot-Lau interferometer with three 266 nm depletion gratings. We here describe the experimental boundary conditions and how to realize them in the lab. This next generation of near-field interferometers shall allow us to soon push the limits of matter-wave interference to masses up to 10 megadaltons.
ISSN:2331-8422