Explicit non-Gorenstein R=T via rank bounds II: Computational aspects
This is the second in a pair of papers about residually reducible Galois deformation rings with non-optimal level. In the first paper, we proved a Galois-theoretic criterion for the deformation ring to be as small as possible. This paper focuses on the computations needed to verify this criterion. W...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2023, Vol.9 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is the second in a pair of papers about residually reducible Galois deformation rings with non-optimal level. In the first paper, we proved a Galois-theoretic criterion for the deformation ring to be as small as possible. This paper focuses on the computations needed to verify this criterion. We adapt a technique developed by Sharifi to compute number fields with twisted-Heisenberg Galois group and prescribed ramification, and compute the splitting behavior of primes in these extensions. |
---|---|
ISSN: | 2522-0160 2363-9555 |
DOI: | 10.1007/s40993-022-00401-1 |