A TRIZ-Adopted Development of a Compact Experimental Board for the Teaching and Learning of Operational Amplifier with Multiple Circuit Configurations

Operational amplifiers (op-amps) are generally used for actualizing simple and complex electronic circuits in the subject of analogue electronics. In an effort to improve the teaching of op-amps in electronics engineering curricula, op-amp circuits in various configurations are often used for experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-11, Vol.14 (21), p.14115
Hauptverfasser: Chong, Peng Lean, Ganesan, Silvia, Ng, Poh Kiat, Kong, Feng Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Operational amplifiers (op-amps) are generally used for actualizing simple and complex electronic circuits in the subject of analogue electronics. In an effort to improve the teaching of op-amps in electronics engineering curricula, op-amp circuits in various configurations are often used for experiments in laboratory sessions so that students can acquire certain psychomotor and cognitive skills by constructing circuit connections and analyzing input–output waveforms. As a result, multiple configurations of operational amplifier circuits are often needed, requiring multiple sets of experimental boards or circuits for each experiment. This is usually not cost effective, requires more consumable electronic components, requires more maintenance and storage space in facilities, and is less user friendly for the students. Therefore, the aim of this research is to design a single, compact, and easy-to-replicate experimental board that can be converted into multiple configurations of the LM741 operational amplifier, comprising an inverting amplifier, a noninverting amplifier, a voltage follower, a summing amplifier, a differential amplifier, a differentiator, and an integrator, with minimal electronic components at a cost lower than EUR 10. The experimental board was tested with a constant input voltage of 1.0 V AC and a switching frequency of 1.0 kHz. It is capable of producing an output voltage corresponding to the individual operational amplifier configurations and can thus be used as a facilitating module for teaching and learning activities in the field of analogue electronics.
ISSN:2071-1050
2071-1050
DOI:10.3390/su142114115