Global bifurcations in a dynamical model of recurrent neural networks

The dynamical behaviour of a continuous time recurrent neural network model with a special weight matrix is studied. The network contains several identical excitatory neurons and a single inhibitory one. This special construction enables us to reduce the dimension of the system and then fully charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of Mathematics 2023-02, Vol.68 (1), p.35-50
Hauptverfasser: Windisch, Anita, Simon, Péter L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamical behaviour of a continuous time recurrent neural network model with a special weight matrix is studied. The network contains several identical excitatory neurons and a single inhibitory one. This special construction enables us to reduce the dimension of the system and then fully characterize the local and global codimension-one bifurcations. It is shown that besides saddle-node and Andronov-Hopf bifurcations, homoclinic and cycle fold bifurcations may occur. These bifurcation curves divide the plane of weight parameters into nine domains. The phase portraits belonging to these domains are also characterized.
ISSN:0862-7940
1572-9109
DOI:10.21136/AM.2022.0158-21