Hamilton transversals in random Latin squares
Gyárfás and Sárközy conjectured that every n×n$$ n\times n $$ Latin square has a “cycle‐free” partial transversal of size n−2$$ n-2 $$. We confirm this conjecture in a strong sense for almost all Latin squares, by showing that as n→∞$$ n\to \infty $$, all but a vanishing proportion of n×n$$ n\times...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2023-03, Vol.62 (2), p.450-478 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gyárfás and Sárközy conjectured that every n×n$$ n\times n $$ Latin square has a “cycle‐free” partial transversal of size n−2$$ n-2 $$. We confirm this conjecture in a strong sense for almost all Latin squares, by showing that as n→∞$$ n\to \infty $$, all but a vanishing proportion of n×n$$ n\times n $$ Latin squares have a Hamilton transversal, that is, a full transversal for which any proper subset is cycle‐free. In fact, we prove a counting result that in almost all Latin squares, the number of Hamilton transversals is essentially that of Taranenko's upper bound on the number of full transversals. This result strengthens a result of Kwan (which in turn implies that almost all Latin squares also satisfy the famous Ryser–Brualdi–Stein conjecture). |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.21102 |