Bounding the Largest Inhomogeneous Approximation Constant
For a given irrational number \(\alpha\) and a real number \(\gamma\) in \((0,1)\) one defines the two-sided inhomogeneous approximation constant \begin{equation*} M(\alpha,\gamma):=\liminf_{|n|\rightarrow\infty}|n| ||n\alpha-\gamma||, \end{equation*} and the case of worst inhomogeneous approximatio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given irrational number \(\alpha\) and a real number \(\gamma\) in \((0,1)\) one defines the two-sided inhomogeneous approximation constant \begin{equation*} M(\alpha,\gamma):=\liminf_{|n|\rightarrow\infty}|n| ||n\alpha-\gamma||, \end{equation*} and the case of worst inhomogeneous approximation for \(\alpha\) \begin{equation*} \rho(\alpha):=\sup_{\gamma\notin\mathbb{Z}+\alpha\mathbb{Z}}M(\alpha,\gamma). \end{equation*} We are interested in lower bounds on \(\rho(\alpha)\) in terms of \(R:=\liminf_{i\rightarrow\infty}a_i,\) where the \(a_i\) are the partial quotients in the negative (i.e.\ the `round-up') continued fraction expansion of \(\alpha\). We obtain bounds for any \(R\geq 3\) which are best possible when \(R\) is even (and asymptotically precise when \(R\) is odd). In particular when \(R\geq 3\) $$ \rho(\alpha)\geq \cfrac{1}{6\sqrt{3}+8}=\cfrac{1}{18.3923\dots}, $$ and when \(R\geq 4\), optimally, $$ \rho(\alpha) \geq \cfrac{1}{4\sqrt{3}+2}=\cfrac{1}{8.9282\ldots}. $$ |
---|---|
ISSN: | 2331-8422 |