Computing the R-matrix of the quantum toroidal algebra

We consider the problem of the R-matrix of the quantum toroidal algebra Uq,t(gl..1) in the Fock representation. Using the connection between the R-matrix R(u) (u being the spectral parameter) and the theory of Macdonald operators, we obtain explicit formulas for R(u) in the operator and matrix forms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-01, Vol.64 (1)
Hauptverfasser: Garbali, Alexandr, Neguţ, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of the R-matrix of the quantum toroidal algebra Uq,t(gl..1) in the Fock representation. Using the connection between the R-matrix R(u) (u being the spectral parameter) and the theory of Macdonald operators, we obtain explicit formulas for R(u) in the operator and matrix forms. These formulas are expressed in terms of the eigenvalues of a certain Macdonald operator, which completely describe the functional dependence of R(u) on the spectral parameter u. We then consider the geometric R-matrix (obtained from the theory of K-theoretic stable bases on moduli spaces of framed sheaves), which is expected to coincide with R(u) and thus gives another approach to the study of the poles of the R-matrix as a function of u.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0120003