The F-Resolvent Equation and Riesz Projectors for the F-Functional Calculus

The Fueter-Sce-Qian mapping theorem gives a constructive way to extend holomorphic functions of one complex variable to slice hyperholomorphic functions. By means of the Cauchy formula for slice hyperholomorphic functions it is possible to have a Fueter-Sce-Qian mapping theorem in integral form for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2023-03, Vol.17 (2)
Hauptverfasser: Colombo, Fabrizio, De Martino, Antonino, Sabadini, Irene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Fueter-Sce-Qian mapping theorem gives a constructive way to extend holomorphic functions of one complex variable to slice hyperholomorphic functions. By means of the Cauchy formula for slice hyperholomorphic functions it is possible to have a Fueter-Sce-Qian mapping theorem in integral form for n odd. On this theorem it is based the F -functional calculus for n -tuples of commuting operators. It is a functional calculus based on the commutative version of the S spectrum. Furthermore, it is a monogenic functional calculus in the spirit of McIntosh and collaborators. In this paper, inspired by the quaternionic case and some particular Clifford algebras cases, we show a general resolvent equation for the F -functional calculus in the Clifford algebra setting. Moreover, we prove that the F -resolvent equation is the suitable equation to study the Riesz projectors.
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-022-01323-7