Investigations of Lithium-Ion Battery Thermal Management System with Hybrid PCM/Liquid Cooling Plate

To improve the operating performance of the large-capacity battery pack of electric vehicles during continuous charging and discharging and to avoid its thermal runaway, in this paper we propose a new hybrid thermal management system that couples the PCM with the liquid cooling plate with microchann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-01, Vol.11 (1), p.57
Hauptverfasser: Zhang, Ying, Fu, Qinwen, Liu, Yao, Lai, Bozhen, Ke, Zhaoqing, Wu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the operating performance of the large-capacity battery pack of electric vehicles during continuous charging and discharging and to avoid its thermal runaway, in this paper we propose a new hybrid thermal management system that couples the PCM with the liquid cooling plate with microchannels. The flow direction of the microchannel structure in the bottom plate is designed according to the characteristics of the large axial thermal conductivity of the battery, and the cooling performance of the whole system under continuous charge/discharge cycles is numerically simulated. The results show that the hybrid PCM/liquid cooling plate can maintain good cooling performance under the discharge process of a large-capacity battery pack. After each cycle the temperature of the battery pack can be reduced to less than 30°, and the maximum temperature change rate of multiple cycles is controlled within 0.8%. With the application of the hybrid PCM/liquid-cooled plate battery cooling system, a safe temperature range of the battery pack is ensured even under multiple cycles of charging and discharging. The present work can facilitate future optimizations of the thermal management system of the large-capacity battery pack of electric vehicles.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11010057