Density Functional Theory Study on the Adsorption of Fe(OH)2+ on Kaolinite Surface in Water Environment

Fe impurity is abundant in rare earth leaching solutions. The optimal hydrate structure of Fe(OH)2+ was calculated based on the quantum chemical in the water environment to investigate the microscopic occurrence of Fe impurity on kaolinite surfaces. The adsorption structure and bonding mechanism (in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-01, Vol.11 (1), p.38
Hauptverfasser: Wu, Hongqiang, Miao, Yuqi, Li, Yong, Yan, Huashan, Tan, Jinbiao, Qiu, Sen, Wu, Hao, Qiu, Tingsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fe impurity is abundant in rare earth leaching solutions. The optimal hydrate structure of Fe(OH)2+ was calculated based on the quantum chemical in the water environment to investigate the microscopic occurrence of Fe impurity on kaolinite surfaces. The adsorption structure and bonding mechanism (including outer and inner layer) of hydrate Fe(OH)2+ on the kaolinite (001) surface were investigated. According to the results, the stable hydrate form of Fe(OH)2+ is [Fe(OH)(H2O)5]2+. Hydrated Fe(OH)2+ has a tendency to adhere to the Si-O surface in the form of outer layer adsorption. Adsorbate tends to adsorb to the Ou (deprotonated upright hydroxyl) site, where it generates a monodentate adsorption compound, and to the Ol and Ou (deprotonated lying and upright hydroxyl) sites, where it generates a bidentate adsorption compound if inner layer adsorption occurs. The Mulliken population and density of state analysis demonstrate that the ionic properties of Fe-Os in the inner layer adsorption compound are reduced and Fe-Os bonds are filled with strong bonding and weak antibonding orbitals. More chemical bonds are formed in the bidentate adsorption compound, and the bidentate adsorption has lower adsorption energy. Therefore, in the process of inner layer adsorption, bidentate adsorption is more likely to occur.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11010038