Large deviations for the interchange process on the interval and incompressible flows
We use the framework of permuton processes to show that large deviations of the interchange process are controlled by the Dirichlet energy. This establishes a rigorous connection between processes of permutations and one-dimensional incompressible Euler equations. While our large deviation upper bou...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2022-12, Vol.32 (6), p.1357-1427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the framework of permuton processes to show that large deviations of the interchange process are controlled by the Dirichlet energy. This establishes a rigorous connection between processes of permutations and one-dimensional incompressible Euler equations. While our large deviation upper bound is valid in general, the lower bound applies to processes corresponding to incompressible flows, studied in this context by Brenier. These results imply the Archimedean limit for relaxed sorting networks and allow us to asymptotically count such networks. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-022-00623-6 |