Large deviations for the interchange process on the interval and incompressible flows

We use the framework of permuton processes to show that large deviations of the interchange process are controlled by the Dirichlet energy. This establishes a rigorous connection between processes of permutations and one-dimensional incompressible Euler equations. While our large deviation upper bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2022-12, Vol.32 (6), p.1357-1427
Hauptverfasser: Kotowski, Michał, Virág, Bálint
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the framework of permuton processes to show that large deviations of the interchange process are controlled by the Dirichlet energy. This establishes a rigorous connection between processes of permutations and one-dimensional incompressible Euler equations. While our large deviation upper bound is valid in general, the lower bound applies to processes corresponding to incompressible flows, studied in this context by Brenier. These results imply the Archimedean limit for relaxed sorting networks and allow us to asymptotically count such networks.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-022-00623-6