Design and Implementation of an Efficient Hardware Coprocessor IP Core for Multi-axis Servo Control Based on Universal SoC

The multi-axis servo control system has been extensively used in industrial control. However, the applications of traditional MCU and DSP chips in high-performance multi-axis servo control systems are becoming increasingly difficult due to their lack of computing power. Although FPGA chips can meet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-01, Vol.12 (2), p.452
Hauptverfasser: Xin, Jitong, Cha, Meiyi, Shi, Luojia, Jiang, Xiaoliang, Long, Chunyu, Lin, Qichun, Li, Hairong, Wang, Fangcong, Wang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multi-axis servo control system has been extensively used in industrial control. However, the applications of traditional MCU and DSP chips in high-performance multi-axis servo control systems are becoming increasingly difficult due to their lack of computing power. Although FPGA chips can meet the computing power requirements of high-performance multi-axis servo control systems, their versatility is insufficient, and the chip is too costly for large-scale use. Therefore, when designing the universal SoC, it is better to directly embed the coprocessor IP core dedicated to accelerating the multi-motor vector control current loop operation into the universal SoC. In this study, a coprocessor IP core that can be flexibly embedded in a universal SoC was designed. The IP core based on time division multiplexing (TDM) technology could accelerate the multi-motor vector control current loop operation according to the hardware–software coordination scheme proposed in this study. The IP was first integrated into a universal SoC to verify its performance, and then the FPGA prototype verification for the SoC was performed under three-axis servo control systems. Secondly, the ASIC implementation of the IP was also conducted based on the CSMC 90 nm process library. The experimental results revealed that the IP had a small area and low power consumption and was suitable for application in universal SoC. Therefore, the cheap and low-power single universal SoC with the coprocessor IP can be suitable for multi-axis servo control.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12020452