Study of the Photocatalytic Properties of Ni-Doped Nanotubular Titanium Oxide
Nanotubular titanium oxide is widely known as a prospective semiconductor photocatalyst for the process of water splitting. Its photoelectrochemical (PEC) efficiency can be improved by doping with 3d metal. In this work, the synthesis of nanotubular titanium oxide (NTO) was carried out by anodizing...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2023-01, Vol.13 (1), p.144 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanotubular titanium oxide is widely known as a prospective semiconductor photocatalyst for the process of water splitting. Its photoelectrochemical (PEC) efficiency can be improved by doping with 3d metal. In this work, the synthesis of nanotubular titanium oxide (NTO) was carried out by anodizing titanium substrates using two doping techniques. First, Ni-doped TiO2 was obtained by immersion in Ni salt solution; second, an ethylene glycol-based fluoride electrolyte containing Ni2+ ions solution was used. The obtained samples were analyzed using SEM, XRD, and photoelectrochemical methods. The produced Ni-doped NTO exhibited photocatalytic activity twice as high as that of nondoped NTO. Additionally, it was found that the immersion technique initiated a shift of the incident photon to converted electron (IPCE) spectra to the visible part of the spectrum. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings13010144 |