Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes
This article discusses the possibilities of two methods for monitoring Physical Vapor Deposition (PVD) process parameters: multi-grid probe, which makes it possible, in particular, to determine the energy distribution of ions of one- or two-component plasma and spectrum analyzer of the glow discharg...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2023-01, Vol.13 (1), p.147 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article discusses the possibilities of two methods for monitoring Physical Vapor Deposition (PVD) process parameters: multi-grid probe, which makes it possible, in particular, to determine the energy distribution of ions of one- or two-component plasma and spectrum analyzer of the glow discharge plasma electromagnetic radiation signal based on the Prony–Fourier multichannel inductive spectral analysis sensor. The energy distribution curves of argon ions in the low-voltage operation mode of ion sources with closed electron current have been analyzed. With a decline in the discharge current, the average ion energy decreases, and the source efficiency (the ratio of the average ion energy W to the discharge voltage U) remains approximately at the same level of W/U ≈ 0.68, …, 0.71 in the operating voltage range of the source. The spectrum analyzer system can obtain not only the spectra at the output of the sensor, but also the deconvolution of the spectrum of the electromagnetic radiation signal of the glow discharge plasma. The scheme of a spectrum analyzer is considered, which can be used both for monitoring and for controlling the processing process, including in automated PVD installations. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings13010147 |