Influences of Synthetic Parameters on Morphology and Growth of High Entropy Oxide Nanotube Arrays

Nanoscale and nanostructured materials have drawn great attention owing to their outstanding and unique properties. Enlightened by the study of “entropy-stabilized oxides”, nanotubes consisting of multi-component mixed metal oxides are developed, which formed on equi-atomic TiZrHfNbTa high-entropy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2023-01, Vol.13 (1), p.46
Hauptverfasser: Shi, Yunzhu, Li, Rui, Lei, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoscale and nanostructured materials have drawn great attention owing to their outstanding and unique properties. Enlightened by the study of “entropy-stabilized oxides”, nanotubes consisting of multi-component mixed metal oxides are developed, which formed on equi-atomic TiZrHfNbTa high-entropy alloy (HEA). However, the growth mechanism and how the oxidation conditions influence the nanotube growth and morphology remains unknown. In the present study, by controlling the anodization parameters (applied voltages and time) and bath compositions (fluoride concentration and water content), scanning electron microscope and transmission electron microscopy are conducted to reveal the morphological evolution. The present work uncovers how the synthetic parameters influence the tube growth and morphology formed on equi-atomic TiZrHfNbTa HEA, therefore gaining insight into the growth mechanism and the feasibility of controlling the morphology of multi-component oxide nanotubes.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13010046