ZnO Particles Stabilized in Polymeric Matrix for Liquid-Phase Methanol Synthesis

ZnO supported on hypercrosslinked polystyrene was developed for liquid-phase methanol synthesis. The synthesized catalyst was characterized using the low-temperature nitrogen physisorption, TEM, XPS, XAS, and CO DRIFT methods. The analysis showed that the catalyst has a high specific surface area (7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2023-01, Vol.13 (1), p.116
Hauptverfasser: Doluda, Valentin Yu, Tkachenko, Olga P., Stepacheva, Antonina A., Sidorov, Alexander I., Bykov, Alexey V., Sulman, Mikhail G., Kosivtsov, Yury Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ZnO supported on hypercrosslinked polystyrene was developed for liquid-phase methanol synthesis. The synthesized catalyst was characterized using the low-temperature nitrogen physisorption, TEM, XPS, XAS, and CO DRIFT methods. The analysis showed that the catalyst has a high specific surface area (720 m2/g) and is characterized by the micro-mesoporous structure typical of the polymer used. The active phase is represented by ZnO species with a hexagonal wurtzite structure. ZnO-HPS showed high activity, selectivity, and stability in liquid-phase methanol synthesis in comparison with the industrial catalyst. The activity of the proposed catalyst was found to be 1.64 times higher than that of the conventional Cu/ZnO/Al2O3.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal13010116