Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade

Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small‐bodied species, will increase with increasing temperature. However, the specific responses of si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diversity & distributions 2023-02, Vol.29 (2), p.272-288
Hauptverfasser: Maihoff, Fabienne, Friess, Nicolas, Hoiss, Bernhard, Schmid-Egger, Christian, Kerner, Janika, Neumayer, Johann, Hopfenmüller, Sebastian, Bässler, Claus, Müller, Jörg, Classen, Alice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small‐bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real‐world communities over time. Location German Alps and pre‐alpine forests in south‐east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well‐protected elevational gradients (alpine grassland vs. pre‐alpine forest), each sampled twice within the last decade. Results We detected clear abundance‐based upward shifts in bee communities, particularly in cold‐adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small‐bodied species in low‐ and mid‐elevations along the grassland gradient. Community responses in the pre‐alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well‐protected temperate mountain regions, small‐bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade.
ISSN:1366-9516
1472-4642
DOI:10.1111/ddi.13658