Counting equivariant sheaves on K3 surfaces

We study the equivariant sheaf counting theory on K3 surfaces with finite group actions. Let \(\sS=[S/G]\) be a global quotient stack, where \(S\) is a K3 surface and \(G\) is a finite group acting as symplectic homomorphisms on \(S\). We show that the Joyce invariants counting Gieseker semistable s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Jiang, Yunfeng, Sun, Hao Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the equivariant sheaf counting theory on K3 surfaces with finite group actions. Let \(\sS=[S/G]\) be a global quotient stack, where \(S\) is a K3 surface and \(G\) is a finite group acting as symplectic homomorphisms on \(S\). We show that the Joyce invariants counting Gieseker semistable sheaves on \(\sS\) are independent on the Bridgeland stability conditions. As an application we prove the multiple cover formula of Y. Toda for the counting invariants for semistable sheaves on local K3 surfaces with a symplectic finite group action.
ISSN:2331-8422