Counting equivariant sheaves on K3 surfaces
We study the equivariant sheaf counting theory on K3 surfaces with finite group actions. Let \(\sS=[S/G]\) be a global quotient stack, where \(S\) is a K3 surface and \(G\) is a finite group acting as symplectic homomorphisms on \(S\). We show that the Joyce invariants counting Gieseker semistable s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the equivariant sheaf counting theory on K3 surfaces with finite group actions. Let \(\sS=[S/G]\) be a global quotient stack, where \(S\) is a K3 surface and \(G\) is a finite group acting as symplectic homomorphisms on \(S\). We show that the Joyce invariants counting Gieseker semistable sheaves on \(\sS\) are independent on the Bridgeland stability conditions. As an application we prove the multiple cover formula of Y. Toda for the counting invariants for semistable sheaves on local K3 surfaces with a symplectic finite group action. |
---|---|
ISSN: | 2331-8422 |