Balanced incomplete factorization preconditioner with pivoting

In this work we study pivoting strategies for the preconditioner presented in Bru (SIAM J Sci Comput 30(5):2302–2318, 2008) which computes the LU factorization of a matrix A . This preconditioner is based on the Inverse Sherman Morrison (ISM) decomposition [Preconditioning sparse nonsymmetric linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023, Vol.117 (1), Article 5
Hauptverfasser: Marín, J., Mas, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study pivoting strategies for the preconditioner presented in Bru (SIAM J Sci Comput 30(5):2302–2318, 2008) which computes the LU factorization of a matrix A . This preconditioner is based on the Inverse Sherman Morrison (ISM) decomposition [Preconditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. Bru (SIAM J Sci Comput 25(2):701–715, 2003), that using recursion formulas derived from the Sherman-Morrison formula, obtains the direct and inverse LU factors of a matrix. We present a modification of the ISM decomposition that allows for pivoting, and so the computation of preconditioners for any nonsingular matrix. While the ISM algorithm at a given step computes only a new pair of vectors, the new pivoting algorithm in the k -th step also modifies all the remaining vectors from k + 1 to n . Thus, it can be seen as a right looking version of the ISM decomposition. The results of numerical experiments with ill-conditioned and highly indefinite matrices arising from different applications show the robustness of the new algorithm, since it is able to solve problems that are not possible to solve otherwise.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-022-01334-1