Balanced incomplete factorization preconditioner with pivoting
In this work we study pivoting strategies for the preconditioner presented in Bru (SIAM J Sci Comput 30(5):2302–2318, 2008) which computes the LU factorization of a matrix A . This preconditioner is based on the Inverse Sherman Morrison (ISM) decomposition [Preconditioning sparse nonsymmetric linear...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023, Vol.117 (1), Article 5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we study pivoting strategies for the preconditioner presented in Bru (SIAM J Sci Comput 30(5):2302–2318, 2008) which computes the LU factorization of a matrix
A
. This preconditioner is based on the Inverse Sherman Morrison (ISM) decomposition [Preconditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. Bru (SIAM J Sci Comput 25(2):701–715, 2003), that using recursion formulas derived from the Sherman-Morrison formula, obtains the direct and inverse LU factors of a matrix. We present a modification of the ISM decomposition that allows for pivoting, and so the computation of preconditioners for any nonsingular matrix. While the ISM algorithm at a given step computes only a new pair of vectors, the new pivoting algorithm in the
k
-th step also modifies all the remaining vectors from
k
+
1
to
n
. Thus, it can be seen as a right looking version of the ISM decomposition. The results of numerical experiments with ill-conditioned and highly indefinite matrices arising from different applications show the robustness of the new algorithm, since it is able to solve problems that are not possible to solve otherwise. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-022-01334-1 |