A Characterization of Minimal Rotational Surfaces in the de Sitter Space

In this paper, it is characterized the generating curves of minimal rotational surfaces in the de Sitter space S 1 3 as solutions of a variational problem. More exactly, it is proved that these curves are the critical points of a potential energy functional involving the distance to a given plane am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2023-04, Vol.20 (2), Article 68
1. Verfasser: López, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, it is characterized the generating curves of minimal rotational surfaces in the de Sitter space S 1 3 as solutions of a variational problem. More exactly, it is proved that these curves are the critical points of a potential energy functional involving the distance to a given plane among all curves of S 1 2 with prescribed endpoints and fixed length. This extends the known Euler’s result that asserts that the catenary is the generating curve of the catenoid.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-023-02275-8