Customized mask region based convolutional neural networks for un-uniformed shape text detection and text recognition

In image scene, text contains high-level of important information that helps to analyze and consider the particular environment. In this paper, we adapt image mask and original identification of the mask region based convolutional neural networks (R-CNN) to allow recognition at 3 levels such as sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2023-02, Vol.13 (1), p.413
Hauptverfasser: Channegowda, Ravikumar Hodikehosahally, Karthik, Palani, Srinivasaiah, Raghavendra, Shivaraj, Mahadev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In image scene, text contains high-level of important information that helps to analyze and consider the particular environment. In this paper, we adapt image mask and original identification of the mask region based convolutional neural networks (R-CNN) to allow recognition at 3 levels such as sequence, holistic and pixel-level semantics. Particularly, pixel and holistic level semantics can be utilized to recognize the texts and define the text shapes, respectively. Precisely, in mask and detection, we segment and recognize both character and word instances. Furthermore, we implement text detection through the outcome of instance segmentation on 2-D feature-space. Also, to tackle and identify the text issues of smaller and blurry texts, we consider text recognition by attention-based of optical character recognition (OCR) model with the mask R-CNN at sequential level. The OCR module is used to estimate character sequence through feature maps of the word instances in sequence to sequence. Finally, we proposed a fine-grained learning technique that trains a more accurate and robust model by learning models from the annotated datasets at the word level. Our proposed approach is evaluated on popular benchmark dataset ICDAR 2013 and ICDAR 2015.
ISSN:2088-8708
2722-2578
2088-8708
DOI:10.11591/ijece.v13i1.pp413-424