Emotion recognition based on the energy distribution of plosive syllables
We usually encounter two problems during speech emotion recognition (SER): expression and perception problems, which vary considerably between speakers, languages, and sentence pronunciation. In fact, finding an optimal system that characterizes the emotions overcoming all these differences is a pro...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-12, Vol.12 (6), p.6159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We usually encounter two problems during speech emotion recognition (SER): expression and perception problems, which vary considerably between speakers, languages, and sentence pronunciation. In fact, finding an optimal system that characterizes the emotions overcoming all these differences is a promising prospect. In this perspective, we considered two emotional databases: Moroccan Arabic dialect emotional database (MADED), and Ryerson audio-visual database on emotional speech and song (RAVDESS) which present notable differences in terms of type (natural/acted), and language (Arabic/English). We proposed a detection process based on 27 acoustic features extracted from consonant-vowel (CV) syllabic units: \ba, \du, \ki, \ta common to both databases. We tested two classification strategies: multiclass (all emotions combined: joy, sadness, neutral, anger) and binary (neutral vs. others, positive emotions (joy) vs. negative emotions (sadness, anger), sadness vs. anger). These strategies were tested three times: i) on MADED, ii) on RAVDESS, iii) on MADED and RAVDESS. The proposed method gave better recognition accuracy in the case of binary classification. The rates reach an average of 78% for the multi-class classification, 100% for neutral vs. other cases, 100% for the negative emotions (i.e. anger vs. sadness), and 96% for the positive vs. negative emotions. |
---|---|
ISSN: | 2088-8708 2722-2578 2088-8708 |
DOI: | 10.11591/ijece.v12i6.pp6159-6171 |