Real-time eyeglass detection using transfer learning for non-standard facial data

The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-08, Vol.12 (4), p.3709
Hauptverfasser: Jain, Ritik, Goyal, Aashi, Venkatesan, Kalaichelvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 3709
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 12
creator Jain, Ritik
Goyal, Aashi
Venkatesan, Kalaichelvi
description The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-tuned facial datasets; it resulted in a well-developed model, but the slightest deviation could affect the performance of the model giving poor results on real-time non-standard facial images. Therefore, a robust model is introduced which is trained on custom non-standard facial data. An Inception V3 architecture based pre-trained convolutional neural network (CNN) is used and fine-tuned using model hyper-parameters to achieve a high accuracy and good precision on non-standard facial images in real-time. This resulted in an accuracy score of about 99.2% and 99.9% for training and testing datasets respectively in less amount of time thereby showing the robustness of the model in all conditions.
doi_str_mv 10.11591/ijece.v12i4.pp3709-3720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766671906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766671906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-d7a419058d8535dedcb9bc371ec62475401f328564607727f2b0d8d9f5ea78503</originalsourceid><addsrcrecordid>eNot0NtKAzEQBuAgCpbadwh4vTXJJpnspRRPUBBFr0M2h5Kyza5JKvTt7cGrGYaff-BDCFOypFR09CFuvfXLX8oiX05TC6RrWmDkCs0YMNYwAer6uBOlGgVE3aJFKbEnnAMnIMUMfXx6MzQ17jz2B78ZTCnY-eptjWPC-xLTBtdsUgk-48GbnE6XMGacxtSUapIz2eFgbDQDdqaaO3QTzFD84n_O0ffz09fqtVm_v7ytHteNpRxq48Bw2hGhnBKtcN7ZvuttC9RbyTgITmhomRKSSwLAILCeOOW6ILwBJUg7R_eX3imPP3tfqt6O-5yOLzUDKSUc2-UxpS4pm8dSsg96ynFn8kFTos-G-myoz4b6YqhPhu0frU1ntQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766671906</pqid></control><display><type>article</type><title>Real-time eyeglass detection using transfer learning for non-standard facial data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jain, Ritik ; Goyal, Aashi ; Venkatesan, Kalaichelvi</creator><creatorcontrib>Jain, Ritik ; Goyal, Aashi ; Venkatesan, Kalaichelvi</creatorcontrib><description>The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-tuned facial datasets; it resulted in a well-developed model, but the slightest deviation could affect the performance of the model giving poor results on real-time non-standard facial images. Therefore, a robust model is introduced which is trained on custom non-standard facial data. An Inception V3 architecture based pre-trained convolutional neural network (CNN) is used and fine-tuned using model hyper-parameters to achieve a high accuracy and good precision on non-standard facial images in real-time. This resulted in an accuracy score of about 99.2% and 99.9% for training and testing datasets respectively in less amount of time thereby showing the robustness of the model in all conditions.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i4.pp3709-3720</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Artificial neural networks ; Datasets ; Eyeglasses ; Real time</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-08, Vol.12 (4), p.3709</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7019-4395 ; 0000-0002-2750-8168 ; 0000-0002-9144-6846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jain, Ritik</creatorcontrib><creatorcontrib>Goyal, Aashi</creatorcontrib><creatorcontrib>Venkatesan, Kalaichelvi</creatorcontrib><title>Real-time eyeglass detection using transfer learning for non-standard facial data</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-tuned facial datasets; it resulted in a well-developed model, but the slightest deviation could affect the performance of the model giving poor results on real-time non-standard facial images. Therefore, a robust model is introduced which is trained on custom non-standard facial data. An Inception V3 architecture based pre-trained convolutional neural network (CNN) is used and fine-tuned using model hyper-parameters to achieve a high accuracy and good precision on non-standard facial images in real-time. This resulted in an accuracy score of about 99.2% and 99.9% for training and testing datasets respectively in less amount of time thereby showing the robustness of the model in all conditions.</description><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Eyeglasses</subject><subject>Real time</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNot0NtKAzEQBuAgCpbadwh4vTXJJpnspRRPUBBFr0M2h5Kyza5JKvTt7cGrGYaff-BDCFOypFR09CFuvfXLX8oiX05TC6RrWmDkCs0YMNYwAer6uBOlGgVE3aJFKbEnnAMnIMUMfXx6MzQ17jz2B78ZTCnY-eptjWPC-xLTBtdsUgk-48GbnE6XMGacxtSUapIz2eFgbDQDdqaaO3QTzFD84n_O0ffz09fqtVm_v7ytHteNpRxq48Bw2hGhnBKtcN7ZvuttC9RbyTgITmhomRKSSwLAILCeOOW6ILwBJUg7R_eX3imPP3tfqt6O-5yOLzUDKSUc2-UxpS4pm8dSsg96ynFn8kFTos-G-myoz4b6YqhPhu0frU1ntQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jain, Ritik</creator><creator>Goyal, Aashi</creator><creator>Venkatesan, Kalaichelvi</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7019-4395</orcidid><orcidid>https://orcid.org/0000-0002-2750-8168</orcidid><orcidid>https://orcid.org/0000-0002-9144-6846</orcidid></search><sort><creationdate>20220801</creationdate><title>Real-time eyeglass detection using transfer learning for non-standard facial data</title><author>Jain, Ritik ; Goyal, Aashi ; Venkatesan, Kalaichelvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-d7a419058d8535dedcb9bc371ec62475401f328564607727f2b0d8d9f5ea78503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Eyeglasses</topic><topic>Real time</topic><toplevel>online_resources</toplevel><creatorcontrib>Jain, Ritik</creatorcontrib><creatorcontrib>Goyal, Aashi</creatorcontrib><creatorcontrib>Venkatesan, Kalaichelvi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Ritik</au><au>Goyal, Aashi</au><au>Venkatesan, Kalaichelvi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time eyeglass detection using transfer learning for non-standard facial data</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>4</issue><spage>3709</spage><pages>3709-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-tuned facial datasets; it resulted in a well-developed model, but the slightest deviation could affect the performance of the model giving poor results on real-time non-standard facial images. Therefore, a robust model is introduced which is trained on custom non-standard facial data. An Inception V3 architecture based pre-trained convolutional neural network (CNN) is used and fine-tuned using model hyper-parameters to achieve a high accuracy and good precision on non-standard facial images in real-time. This resulted in an accuracy score of about 99.2% and 99.9% for training and testing datasets respectively in less amount of time thereby showing the robustness of the model in all conditions.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i4.pp3709-3720</doi><orcidid>https://orcid.org/0000-0002-7019-4395</orcidid><orcidid>https://orcid.org/0000-0002-2750-8168</orcidid><orcidid>https://orcid.org/0000-0002-9144-6846</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2022-08, Vol.12 (4), p.3709
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2766671906
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Datasets
Eyeglasses
Real time
title Real-time eyeglass detection using transfer learning for non-standard facial data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20eyeglass%20detection%20using%20transfer%20learning%20for%20non-standard%20facial%20data&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Jain,%20Ritik&rft.date=2022-08-01&rft.volume=12&rft.issue=4&rft.spage=3709&rft.pages=3709-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i4.pp3709-3720&rft_dat=%3Cproquest_cross%3E2766671906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766671906&rft_id=info:pmid/&rfr_iscdi=true