Real-time eyeglass detection using transfer learning for non-standard facial data

The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-08, Vol.12 (4), p.3709
Hauptverfasser: Jain, Ritik, Goyal, Aashi, Venkatesan, Kalaichelvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to build a real-time eyeglass detection framework based on deep features present in facial or ocular images, which serve as a prime factor in forensics analysis, authentication systems and many more. Generally, eyeglass detection methods were executed using cleaned and fine-tuned facial datasets; it resulted in a well-developed model, but the slightest deviation could affect the performance of the model giving poor results on real-time non-standard facial images. Therefore, a robust model is introduced which is trained on custom non-standard facial data. An Inception V3 architecture based pre-trained convolutional neural network (CNN) is used and fine-tuned using model hyper-parameters to achieve a high accuracy and good precision on non-standard facial images in real-time. This resulted in an accuracy score of about 99.2% and 99.9% for training and testing datasets respectively in less amount of time thereby showing the robustness of the model in all conditions.
ISSN:2088-8708
2722-2578
2088-8708
DOI:10.11591/ijece.v12i4.pp3709-3720